EFFECT OF THERMAL CONDITIONS ON THE
STABILITY OF A CRYSTALLIZATION PROCESS
FROM A MELT

V. A, Tatarchenko UDC 536.421.4

The stability of a crystallization process from a melt is considered in the approximation of the
one-dimensional thermal problem in relation to random displacements of the liquid and solid
phase interface as a function of the crystallization conditions.

At the present time, the production of ¢rystals and methods of crystallization from the melt are receiv-
ing the most widespread popularity (fused zone methods of Chokhral'skii, Verneille [1], and Stepanov [2]). The
absence of a strict configuration formation unifies them and, therefore, the form of the crystal is determined
by the growing mechanism. Disturbances of any kind of the stability of the growth parameters lead to a change
of the transverse dimensions and are the main cause of the appearance of defects in a crystal.

A change of dimensions of a growing crystal is due to a change of position of the crystallization front,
Usually, the automatic maintenance of the crystallization front by determining the level leads to an improve-
ment of the shape and quality of the crystal. It will be interesting to carry out an analysis of the thermal con~
ditions of crystal growth for the purpose of choosing crystallization conditions which will ensure stability of
the position of the crystallization front in relation to random perturbations. The application of these conditions
permits the growth process to be used as an automatic control system and crystals of improved guality and
constant cross section to be obtained,

A study of the nonsteady-state equation of thermal conductivity, taking account of the special features of
the structure of the thermal zone, will be a direct solution of the problem posed. However, it appears that in
the investigation of crystallization from a melt data about the stability of the process can be obtained as a re-
sult of solving the quasi-steady-state problem. As demonstration of the validity of this approach to crystalliza-
tion processes the excellent agreement between the theoretical [3] and experimental [4] results obtained during
the investigation of the shape stability of the liquid and solid phase inferface can be used,

We shall judge the behavior of the system by the sign of the ration =6'/6 (6 is the amplitude of the ran-
dom displacement of the crystallization front and ' is the speed of displacement of the front as a result of the
reaction of the system to the perturbation). If n < 0 ¢here is a negative feedback), the system is stable, If
7 > 0 (there is a positive feedback in the system), the system is unstable, We shall consider the problem in
the system of coordinates shown in Fig. 1. For this, we shall assume the isotherms to be planes, we shall
substitute the actual liquid column by a vertical cylinder, and we shall not take into account thermal convec-
tion in the melt, The temperature distribution in the melt and in the crystal will be found as the result of
solving the boundary-value problem for the one-dimensional thermal conductivity equations, taking into account
the movement of the substance and the heat exchange at the surface [5]:

eT, V4T,

— T,—Tp =0, 0« X,
dx? %y dx R (T m SES @)
4T, |4 dT, 2u .
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Obviously, the first boundary condition is
T11x=X = Tg[x:X = To . (3)

Institute of Solid-State Physics, Academy of Sciences of the USSR, Moscow. Translated from Inzhenerno~
Fizicheskii Zhurnal, Vol. 30, No. 3, pp. 532-539, March, 1976, Original article submitted December 3,
1974,

This materia_l is .protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of. thzsApu.bltcanon may be repra@llceq, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

353



<

v oo gl
;":E‘:O e N
1
{
i
sy s
CEGN S y
o s = R
a b c d e

Fig. 1. Diagram of crystallization by the method of: a)

Chokhral'skii; b) Stepanov; c¢) Verneille; d) fused zone

(zone moving downward); e) fused zone (zone moving up-
ward).

For the melt, we shall assume a known temperature at a fixed point of the liquid cbolumn, which we shall
use as the origin of the coordinates,

T11x=0 = Y‘f * (4)
For the crystal, we shall consider the problem for two types of boundary conditions,

I. Temperature at the end of the crystal is fixed

Tol,_;=Ts. (5)
II. Heat removal through seeding is fixed

dT, |

¢l =k (6

dx lx=L )

Equations (1) and (2), in which the heat exchange is given by Newton's law, can be used for high tempera-
tures, if it is assumed that

b= T by (7
where
Ta—Tm
= 0 = 8
Wy fb.s Tcr— Tm ( )

A simijlar linearization of the law of radiation by a radiation coefficient leads to results which coincide with
experiment during the crystallization of such a high-temperature substance as ruby [6].

An additional condition associated with the distribution of temperatures in the liquid and solid phases
is the equation of thermal balance at the crystallization front:
Tt g, D)

dx SX=X I dx .1X=X

— Ay =Lov. (9)

If the position ofthe crystallization front receives a small perturbationd, for example, as the result of a brief
change of displacement of the crystal, conditions (3) and (9) must be fulfilled for the new position of the crys-
tallization front, taking into account the difference between the actualrate of crystallization and the rate of dis-
placement of the crystal, by the amount of the rate of movement of the crystallization front as a result of the
reaction of the system to the perturbation.

Tileexis = Tolrexis = To» (10)
— 2 at, 4+ A =%o(V —9). (1)
dx le=x+6 dx le=x-+6
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Expressions for the temperature gradients in the liquid and solid phases with the new position of the crys-
tallization front can be expanded in Taylor series and, by using the smaliness 6, can be limited to the linear
terms of the expansion

dr d (dT, | dT, d_ [ dTy | ‘
—A 2 — R —— 2 + A LA — | =] = p (V—0§).
2 dx |e=x ? dX ( dx ix:X) ' dx x=X 1 axX L dx !x=X
Taking Eq. (9) into account, we obtain
=t L () Vb d (4] ). (12)
5 o dX dr |w=x/ &0 -dX dx le—x

The temperature gradients in the liquid and solid phases, inthe presence of a perturbation of the crystal-
lization front, can vary because of a change in the following parameters: a) extension of the liquid zone;
b) temperature of the outside medium; and c) the heat-exchange coefficient of the crystal surface. We
shall not take into account a change in length of the crystal. The length of the crystal is changing con-
tinuously during crystallization and, therefore, we shall consider the case when L » X. Expression (12)
can now be transformed in the following way:

n=_il__[_d_(ﬂz.! )+__‘L(_dfl_§ ‘)ﬂ"m+

o | dX \ dx |—x dT, \ dx k=x] dX

Cd (dTy |y dY b [ d [ dT, | dTm d {dT, | ay

- + - | ) + Ry 13)
v \ dr lex) dX %o | dTm \ dr leex) dX 4y \ dt lex) dX

Let us consider, first of all, the contribution to the stability of a change of the extent of the liquid
zone and the temperature of the surrounding medium, on the assumption that the crystal size does not
change and that the heat-exchange coefficient remains constant, and then we shall consider a change of
crystal size and a nonconstant heat-exchange coefficient of the surface. This approach is justified in that
the problem will be considered in linear approximation and the contribution of all factors to the stability
can be assumed to be additive,

Suppose that the temperature distribution of the medium is specified by the linear function
Th= Tno— kx. (14)
We introduce the scaled temperatures
TF =T, —Ty (i=1, 2, Tyy= const);

TS =T~ Tyt kx— FARV (T, == const);
2u%;
TE =To— Tpo+ kX__.f);iﬂV_ ;
2ux;
TH =T T R
2uny
T = Ty— Tipy+ kL — ARV
2ux,

Equations (1) and (2) and the boundary conditions (3)-(6) assume the form

7l iy Tl as)
T{lemo = T (1e)
T emx = T ; am)
Tglx:L = T:;k; (18)
ars
dx oo = 0. (19)

'The last condition is obtained on the assumption that the seeding area is much less than the area of the

355



crystal and that the removal of heat from the crystal is effected in consequence of the nonconstant tempera~
ture of the outside medium. We denole

/'_Vz'——é_
—/ A
AT vy
We find

x}) sh[E (X — x)] + Tat exp [ 2V

T# = csch (5,X) {Tf* exp ( (£ — X)l sh (glx)} ;

2%,

*1

v
2

arf | o« ( 14 *
el i T g exp N X esch(g,X) +To [

FEcthEX) ] . 20)

We expand exp [(V/2%)X] in series and, using the smallness (V/2w)X, we limit ourselves to two terms of
the expansion

_‘fi%! =—Tf*gl(1+ Q‘f X) csch(§1X)+Ta‘;[ u —;—Elcth(&X)}. (21)
=X “ / . 1
For the boundary conditions (17) and (18)
T# = csch g, (L — X)] fTé‘zexp[ (x—X)} shig, (L— )| +Ts*exp[ Vo g—D|shge—xn 22
1 2%, J 2%,
ary . _ v _ L—X)} +¢18 Vo x—
=Ty [ et C— X} + 5T exp (X — Ly | csch &, (L— X)]. 23)
dx x=X 2“2 2"2
For boundary conditions (17) and (19)
sy (L— o)+ Echls, (L) ”
T = To — 22 exp (x—X)|, 24)
vV %
o ShlE (L= )]+ & ch (L — X) e
e
Ve gy (L— X0+ &y sh 1y (L — X)) '
arl o oLpp |V 2a 7 : 25)
e o T (L X0+ &y o (L— 0 |
2

1f the heat-exchange coefficient or the diameter of the crystal (liquid column) depends on the coordinates
(T), =const), Eq. (1) and (2) can be written as

2T v oodr¥ 2 «
T Y(x)TF =0. (26)
By the substitution of T{‘< =rjexp [(V/2n)x], Eq. 26)is converted to the form
d*r; ve 2
e —[ W TR, y(x)} =0 en

The theory of the approximate solution of equations of the type 27) has been well developed [7]. Inthe
vicinity of the point X, an approximation can be obtained for Y (x) from the power series

Y =YX)+@x—X) Y <X>+% — XY X) e ©8)

If, in expression (28), the expansion is limited to three terms, the function Y (x) will be approximated by
a considerable segment in the vicinity of the point X, and the solution of Eq. (27) can be represented ap-
proximately in terms of a Beber function [7]. If, in expression (28), the term containing (x — X)2 can be
neglected, Eq. (27) will be the standard form of the equation for the Airy integral. Neglecting terms with
(x =— X) and subsequent ones in the right~hand side of Eq. (28) we obtain the equation

dz.,_-i 1)) B
W——{@fﬁY(X)]Ti~O, (29)
the solution of which has the form
T, = Cyexp (%, (X)x] + Crexpl{—§ (X) x]. (30)
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This expression is the approximation to the solution of Eq, (27) inthe interval ix — XJ of a quite small
quartity., By choosing another starting point, x = X;, an approximation can be obtained which is valid in
the interval Ix — X! of a quite small quantity, etc. The constants C{ and C, are determined in each inter-
val by means of the values found in the adjacent intervals, and the quantities ri and T.i are compared at
the points defining the two intervals. Thus, we approximate Y (x) by a power function for which it can be
assumed Ty, = const. This process is effective if Y'/Y is small.

The cause of a change of the heat-exchange coefficient at the surface can be, for example, a forced
"blowing" of the crystal ina localized zone [8], and the cause of a change of the diameter is a change of the thermal me-
chanism of growing in the case of displacement of the crystallization front, which is characteristic of Verneille’s
method [9], or capillary effects at the crystal — melt boundary inthe case of crystal pulling by Chokhral'-
skii's or Stepanov's method [L0]. Inthese cases, the crystal is a cylinder with a step at the crystalliza-
tion front, originating as a result of the perturbation. The diameter of the melt column also is changed.

Let us consider the region immediately adjacent to the crystallization front, assuming that the shape of
the step, together with the change of the heat exchange coefficient, determines the form of the function
Y(x). We obtain from Eq. (29)

T* =exp ( o x) (Crexp I, (X) 51 + Cyexp [— 2, (X) A1}, 1)
dr¥ |4 vV ,
T sz = o exp ( 5, X) + {Cyexp [§; (X) X] -+ Cyexp [— &, (X) X]} =
vV
+ exp ( ™ X) {8.Cyexp [§; (X) X] —E§Cyexp[— &, (X) X1} (32)
\ 2%
If other intervalsof change of Y (x) are not considered, only one boundary condition can be used:
TFleex=T7. ‘ 33)
Whence
*®
) = T e (—V—~ Xj £ (X) {Cyexp [E; (X) X — Cyexp— &, (X) XI}. (34)
X lx=X QKi 2 :

By using expressions (21), (34), and (23), the criterion of stability (13) can be obtained in explicit
form

ke TEREXN—TE  qTFEVIEXchEX) —sh@X)  ME [V :
=g 8T wmEn 9% 2 (E,X) Ty | oy TROEA) |+
L] [_l-ﬁ _ L 4T TS“(I_I)Jd_M R S 0 S/ Y
CYOoR | B dx ey B dr lex 2\ wE  wE )] dr ex $ORP | B dr |ex
w®
T 4 S A 11 ( 12—~—~10H AR P Dok fescthis, (L — X)) —— } (35)
g dx Lex 2 \nE %l dx |e—x P 2,

When using expression (25) in place of Eq. (23}, the last term in Eq. (35) is replaced by

Vv
L e[t (L— X)] + &y sh[Ey (L —
e B LN+ HhE L o
&0 2" shit, (L—X)] + & ch(E(L—X) 2%
Hy

The contribution to the stability of the process of crystallization introduces the negative terms of ex~
pression (35). The first term is negative if Tf* cosh (§X) > ng, the second term is negative always; the
third and subsequent terms if k > 0; the fourth if @u/dX) > 0; the fifth if (dR/dX) < 0, In order to esti-
mate the quantities @T;/dx)Ix =y and AT,/ dx)l;~x, formulas (21), (23), or (25) can be used.

The relative contribution of the different terms of expression (35) to the stability depends on the na-
ture of the crystallization process and of the substance being crystallized. For example, during pulling
of a thin aluminum ribbon by Stepanov's method, for the thermal mechanisms described in [11], by using
the data of [12], we obtain

n=—10—0,6—0,02—03—56-—002=—75sec!,

- 'When pulling a sapphire fiber, 7 = —65 sec™!, so that the term related with change of diameter also plays
a principal role, which confirms the validity of the conclusions drawn in [13], where the estimate of the
stability in Stepanov's method is carried out by a similar scheme,
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NOTATION

Ti, temperature; Aj, coefficient of thermal conductivity; wj, coefficient of thermal diffusivity; cj,
specific heat (i =1 for the melt and i = 2 for the crystal); x, running coordinate; X, coordinate of the
crystallization front; T¢, temperature of the melt at a fixed point; T, crystallization temperature; V,
speed of travel of crystal (melt); p, density (change of density during crystallization is not taken into
account); R/2, ratio of area of cross section of the crystal to its perimeter (for a cylinder, one-half of
the radius, for a plate, one-half of the thickness); u, heat-exchange coefficient (ug, convective; u,,
radiative); o, Stefan— Boltzmann constant; Ty, temperature of the surrounding medium (gas, screens); -
Ter, temperature of the crystal; fy, g, factor taking account of the blackness and shape of the crystal and
the wall receiving the emission; Tg, temperature of the end of the crystal; & , specific heat of fusion;

L, length of the crystal; k, temperature gradient of the medium; Y = u/R.
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