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The s tabi l i ty  of a c rys t a l l i za t ion  p roces s  f r o m  a mel t  is cons idered  in the approx imat ion  of the 
one-d imens iona l  t h e r m a l  p rob lem in re la t ion  to r andom d i sp lacements  of the liquid and solid 
phase in ter face  as a function of the c rys ta l l i za t ion  conditions.  

At the p resen t  t ime ,  the product ion of c ry s t a l s  and methods of c rys t a l l i za t ion  f r o m  the mel t  a r e  r e c e i v -  
ing the mos t  widespread  popular i ty  (fused zone methods of Chokhra l ' s td i ,  Vernei l le  [t], and Stepanov [2]). The 
absence  of a s t r i c t  configurat ion fo rma t ion  unifies them and, t he r e fo re ,  the f o r m  of the c ry s t a l  is de te rmined  
by the growing mechan i sm.  Dis tu rbances  of any kind of the s tabi l i ty  of the growth p a r a m e t e r s  lead to a change 
of the t r a n s v e r s e  d imensions  and a r e  the main  cause of the appearance  of defects  in a c ry s t a l .  

A change of d imensions  of a growing c ry s t a l  is due to a change of posi t ion of the c rys ta l l i za t ion  f ront .  
Usually, the automat ic  maintenance of the c rys t a l l i za t ion  front by de termining  the level leads to an i m p r o v e -  
ment of the shape and quality of the c rys t a l .  It will be in te res t ing  to c a r r y  out an analys is  of the t h e r m a l  con- 
dit ions of c rys t a l  growth for the purpose  of choosing c rys t a l l i za t ion  conditions which w-~lI ensure  s tabi l i ty  of 
the posi t ion of the c rys t a l l i za t ion  front  in r e l a t ion  to r andom per tu rba t ions .  The appl icat ion of these  conditions 
p e r m i t s  the growth p roce s s  to be used as an automat ic  control  s y s t e m  and c ry s t a l s  of improved  quality and 
constant  c ro s s  sec t ion  to be obtained. 

A study of the nons teady-s ta te  equation of t h e r m a l  conductivity,  taking account of the specia[  fea tures  of 
the s t ruc tu re  of the t h e r m a l  zone, will be a d i rec t  solut ion of the p rob lem posed.  However,  it appea r s  that  in 
the inves t iga t ion  of c rys t a l l i za t ion  f r o m  a mel t  data  about the s tabi l i ty  of the p roces s  can be obtained as a r e -  
sult  of solving the q u a s i - s t e a d y - s t a t e  p rob lem.  As demons t r a t ion  of the validi ty of this approach  to c r y s t a l l i z a -  
t ion  p r o c e s s e s  the excel lent  a g r e e m e n t  between the theore t i ca l  [3] and expe r imen ta l  [4] r e su l t s  obtained during 
the invest igat ion of the shape s tabi l i ty  of the liquid and solid phase in te r face  can be used.  

We shal l  judge the behavior  of the s y s t e m  by the sign of the r a t io  ~ = 5 ' / 5  (5 is the ampli tude of the r a n -  
dom d i sp lacement  of the c rys t a l l i za t ion  front and 5' is the speed of d i sp lacement  of the front as a resu l t  of the 
r eac t i on  of the s y s t e m  to the per turbat ion) .  If ~ < 0 (there is a negative feedback),  the s y s t e m  is s table .  If 

> 0 (there is a posi t ive  feedback in the sys tem) ,  the s y s t e m  is unstable .  We shal l  consider  the p rob lem in 
the s y s t e m  of coordinates  shown in Fig. 1. For  th is ,  we shal l  a s s u m e  the i s o t h e r m s  to be planes,  we shal l  
subst i tute  the actual  liquid column by a ve r t i ca l  cyl inder ,  and we shal l  not take  into account t h e r m a l  convec-  
t ion  in the mel t .  The t e m p e r a t u r e  d is t r ibut ion  in the mel t  and in the c rys t a l  will be found as the r e su l t  of 
solving the boundary-va lue  p rob lem for  the one-d imens ional  t h e r m a l  conductivity equations,  tak i r  N into account 
the movement  of the subs tance  and the heat exchange at the su r face  [5]: 

d2T~ V dT~ 2~ ( T ~ - - T  m)=0 ,  0~<:x~X,  (1) 
dx2 • dx R~I 

d~T~ V dT~ 2~ (T e _ Tra} --= 0, X ~. x ~ L. (2) 
dx 2 z 2 dx R~2 

Obviously, the f i r s t  boundary condition is 

TlI~=x = Te!x=x = To, (3) 
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Fig. 1. Diagram of crys ta l l iza t ion by the method of: a) 
Chokhral 'ski i ;  b) Stepanov; c) Verneil le;  d) fused zone 
(zone moving downward); e) fused zone (zone moving up- 
w a r d ) ,  

For  the melt, we shall assume a known tempera tu re  at a fixed point of the liquid Column, 
use as the origin of the coordinates ,  

T1]x= 0 = Tf . 

For  the c rys ta l ,  we shall consider  the problem for two types of boundary conditions. 

I. Tempera tu re  at the end of the c rys ta l  is fixed 

T2!.=L = Ts. 

II. Heat removal  through seeding is fixed 

Equations 
tu re s ,  if it is assumed that 

dT2 ~=L = k. 

dx  ,. 

where 

which we shall 

(4) 

(5) 

(6) 

(1) and (2), in which the heat exchange is given by Newton's law, can be used for high tempera- 

--- ~tc+ P'r, (7) 

4 4 T}.r-- T}~ (s) 
lar = ~ Ter_rm " 

A similar linearization of the law of radiation by a radiation coefficient leads to results which coincide with 
experiment during the crystallization of such a high-temperature substance as ruby [6]. 

An additional condition associated with the distribution of temperatures in the liquid and solid phases 
is the equation of thermal balance at the crystallization front: 

dT.a! 
__ ~,~. dT~.dx :x=x + ~'~ ~X-x ~=x= t,~gV. (9) 

If  the position of the c rys ta l l iza t ion  front rece ives  a small  per turbat ion 6, for  example, as the resul t  of a brief  
change of displacement Of the crystal ,  conditions (3) and (9) must be fulfilled for the new position of the c r y s -  
tall ization front, taking into account the difference between the actual ra te  of crys ta l l iza t ion and the rate  of d is -  
placement  of the crysta l ,  by the amount of the rate  of movement of the crysta l l izat ion front as a resul t  of the 
react ion of the sys tem to the perturbation.  

dT~ dTx 
- -  z~ ~ x=x+~ + ~i ~ x=x+~ = '~P (v -- ~) 

(10) 

(11) 

354 



Express ions  for  the t e m p e r a t u r e  gradients  in the liquid and solid phases  with the new posi t ion of the c r y s -  
ta l l iza t ion  front  can be expanded in Tay lo r  s e r i e s  and, by using the sma l lnes s  6, can be l imited to  the l inear  
t e r m s  of the expansion 

dTo - -  ~ 6  d ( dT~ I 

Taking Eq. (9) into account,  we obtain 

dTa ,,-x + ~ 5  d dT~ [ ) = ~ 9  (V--  8). 

n = 7 -  = ~Zo dX \ dx [ ~ = x / - - ~  • ~--,~=x ' 

The t e m p e r a t u r e  gradients  in the liquid and solid phases ,  in the p re sence  of a pe r tu rba t ion  of the c r y s t a l -  
l izat ion front,  can va ry  because  of a change in the following p a r a m e t e r s :  a) extension of the liquid zone; 
b) t e m p e r a t u r e  of the outside medium; and c) the hea t -exchange  coefficient  of the c ry s t a l  su r face .  We 
shal l  not take into account  a change in length of the c rys t a l .  The length of the c ry s t a l  is changing con-  
t inuously during c rys t a l l i za t ion  and, t he r e fo re ,  we shall  cons ider  the case  when L *) X. Expres s ion  (12) 
can now be t r a n s f o r m e d  in the following way: 

n=- W -a-Z-, dx ix=x' d--rT  CL-, !x=x 7Z -+  

Let us cons ider ,  f i r s t  of all ,  the contr ibut ion to the s tabi l i ty  of a change of the extent of the liquid 
zone and the t e m p e r a t u r e  of the surrounding medium,  on the a s sumpt ion  that the c ry s t a l  s ize  does not 
change and that the hea t -exchange  coefficient  r ema ins  constant ,  and then  we shal l  consider  a change of 
c r y s t a l  s ize  and a nonconstant hea t -exchange  coefficient  of the su r face  This  approach  i s  justified in that  
the p r o b l e m  will be cons idered  in l inear  approx imat ion  and the contr ibut ion of al l  f ac to r s  to the s tabi l i ty  
can be a s sumed  to be addit ive.  

Suppose that the t e m p e r a t u r e  d is t r ibut ion of the medium is specif ied by the l inear  function 

T m = Tmo-- kx. (14) 

We introduce the scaled t e m p e r a t u r e s  

T* = T i -  T m (i = 1, 2, T m =  const); 

* (Tm~ const); T~ = T~-- Tmo+ k x - -  k~iRV 

To* = T O - -  Tmo -I" kX  k~qRV . 
2p• 

k~IRV . 
r (  e-r o ' 

Ta* = Ta - -  Tmo_ kL k)~2RV . 
2,u• 2 

Equations (1) and (2) and the boundary conditions (3)-(6) a s s u m e  the f o r m  

d2T * V dT* 2~t T* = 0; (15) 
dx= • dx R~'i 

T*[x=o = Tf*; (16) 

T* ],=x = To* ; (17) 

T,[x=L. = T*'a, (18) 

dT* .=z. 
- - -  = O .  

dx 

The las t  condition is obtained on the a s sumpt ion  that  the seeding a r e a  is much less  than the a r e a  of the 

(19) 
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crys ta l  and that the removal  of heat f rom the c rys ta l  is effected in consequence of the noneonstart t empera -  
ture  of the outside medium. We denote 

/ 2~ = ~ ! ,/ V2 

4z~ ~ RX~ 

We find 
' V = csch  lX, oxp x)sht l X-x,  +  o exp 1 sh( lx,} 

d . '  ( V )  ] = --  Tf ~1 exp X csch (~1 X) + T* + ~, cth (g,X) dx ! * Ix=X ~ �9 
(20) 

We expand exp [(V/2~q)X] in se r i e s  and, using the smal lness  (V/2~q)X, we limit ourselves  to two t e rms  of 
the expansion 

( V X) csch(~X)+ T * [  2-~-zx +~c th (~ ,X) ] .  (21) dT, I ------ T?~I 1 +  2• 
dx !*=x 

For the boundary conditions (17) and (18) 

T*=csch[g~_(L--X)l!rooexp[--(x--X) sh [g~ (L - -  x)] §  (x--L) shlg~(x--X)l;  (22) 

d _ = To~. --  ~o cth [~o (L - -  X)] + ~2T~' exp - (X --  L) csch [~ (L--  X)]. 
dx :x=x 

For boundary conditions (17) and (19) 

(23) 

V 
- -  sh[~2(L--x)] q -~ 'ch[~(L- -x )]  [ V ] 

T* T*, 2• exp - -  (x - -  X) , (24) 
_ = 02 _ ~ V  sh [~2 (L-- X)l + ~e ch (~. (L-- X)l 2• 

2• 

~ ch [go (L-- X)I + ~2 sh [~ (L -- X)] i dT'* l T* V 2• " i 
dx--i = 02 _ _  ~0 . (25) 

Ix=x 2• - V sh [~= (L--  X)] + g2 ch [~2 (L--  X)] 
2• 2 

!f the heat-exchange coefficient or the d iameter  of the c rys ta l  (liquid column) depends on the coordinates 
(Tm = eonst), Eq. (1) and (2) can be wri t ten as 

d'r*  V . dr* 2 Y (x) T* = O. (26) 
dx~ • dx ~'i 

By the substi tution of Ti* = r i e x p  [(V/2~i)x], Eq. (26) is converted to the form 

d~ridx~ [[ 4• - ~ V 2  ' ~"-72 Y (x) ] ~ ---- 0. (27) 

The theory of the approximate solution of equations of the type (27) has been well developed [7]. In the 
vicinity of the point X, an approximation can be obtained for Y (x) f rom the power se r i e s  

1 " (x - -  X) 2 Y" (X) + . . . .  (28)  g (x) = r (x)  + (x - -  x )  g '  (x) + - ~  

If, in expression (28), the expansion is limited to three terms, the function Y(x) will be approximated by 
a considerable segment in the vicinity of the point X, and the solution of Eq. (27) can be represented ap- 
proximately in terms of a Beber function [7]. If, in expression (28), the term cor~aining (x -- X) 2 can be 
neglected, Eq. (27) will be the standard form of the equation for the Airy integral. Neglecting terms with 
(x -- X) and subsequent ones in the right-hand side of Eq. (28) we obtain the equation 

d>qdx 2 [ V24• ~ L~ 2 Y (X) ] xi = O' (29) 

the  solution of which has the form 
x~ = C1 exp [~, (X) xl + C~ exp [-- ~i (X) x]. (30) 
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This e x p r e s s i o n  is the approx imat ion  to the solution of Eq. (27) in the in terva l  Ix - -  XI of a quite smal l  
quantity. By choosing another  s t a r t ing  point, x = X l, an  approx imat ion  can be obtained which is valid in 
the in te rva l  ix --  Xll of a quite sma l l  quantity, e tc .  The constants  C 1 and C 2 a r e  de te rmined  in each  i n t e r -  
val  by means  of the values  found in the adjacent  in te rva l s ,  and the quantit ies r i  and r i a r e  compared  at 
the points defining the two in te rva l s .  Thus,  we approx imate  Y(x) by a power function for which it can be 
a s sumed  T m ~ const .  This  p roce s s  is effect ive if Y ' / Y  is  s m a l l .  

The cause  of a charge  of the hea t -exchange  coefficient  at the su r face  can be,  for  example ,  :i forced 
"blowing" of the c ry s t a l  in a local ized zone [8], and the cause  of a change of the d i a m e t e r  is a change of the t h e r m a l  n~e- 
chards m of growing in the case  of d i sp lacement  of the c rys ta l l i za t ion  front ,  which is c h a r a c t e r i s t i c  of Ve rne i l l e ' s  
method [9], or  cap i l l a ry  effects  at the c r y s t a l - -  mel t  boundary in the case  of c ry s t a l  pulling by Chokhra l ' -  
sk i t ' s  or Stepanov's  method [10]. I n t h e s e  ca se s ,  the c r y s t a l  is a cyl inder  with a s tep  at the c r y s t a l l i z a -  
t ion front ,  originating as a r e s u l t  of the per turba t ion .  The d i a m e t e r  of the melt  column a l so  is changed. 
Let us consider  the reg ion  immedia t e ly  adjacent  to  the c rys t a l l i za t ion  fror~, a s suming  that the shape of 
the s tep,  toge ther  with the change of the heat exchange coefficient ,  de t e rmines  the f o r m  of the function 
Y(x). We obtain f r o m  Eq. (29) 

= x {el exp [g~ (X) x] + C~ exp [-- gi (X) x]}, (31) 

dT* V (V ) 
dx ,x=x' = --2• exp ~ X + {C1 exp [~ (X) X] + C~ exp [--  ~ (X) X]} <- 

+ exp ( @ X ) {~iCi exp [~ (X) Xl -- ~iC~ exp [-- ~ (X) X]}. 

If other in te rva ls  of change of Y (x) a r e  not cons idered ,  only one boundary condition can be used: 

Whence 

for  m 

(32) 

Ti I.=x = T*. (33) 

dx ,=x 2• ~i (X) {C1 exp [~ (X) X - -  C. exp [--  ~ (X) X]}. (34) 

By using expres s ions  (21), (34), and (23), the c r i t e r i on  of s tabi l i ty  (13) can be obtained in explicit  

1 ~ I 1 dT~ x=x " 1 
+ ~toR ~ dx ~ 

1 

Ti'~ ch(~tX)-- T~ ciTf*~lV[~Xch(~lX)--sh(~tX)] )@ [ V ] 
sh ~ (~i X) 2 ~  sh 2 (~IX) ~ 9  L ~ + ~l cth (~IX) + 

dTi = x T~V ( 1 1 )] dv x 1 [ 1 

dT~dx x=x ' T:V ( 2 •  • ) ]  -d-x--dR ,=x ,,~92@ {~c th [~2(L- -X) ] - - -~x2  }. (35) 

(23), the last  t e r m  in Eq. (35) is r ep laced  by 

- -  c h [ ~ 2 ( L - - X ) I + ~ s h [ ~ ( L - - X ) ]  V / 

--  ~--~- ~ V 2• t" 2• sh [~_ (L - -  X)] + ~ ch (~2 (L - -  X)] 

When using e x p r e s s i o n  (25) in place of Eq. 

V 

~k  2• 2 

dT~ I 
dx ix=x-- 

(36) 

The contr ibut ion to  the s tabi l i ty  of the p roce s s  of c rys t a l l i za t ion  int roduces  the negative t e r m s  of ex-  
p r e s s i o n  (35). The f i r s t  t e r m  is negative if Tf* cosh (~IX) > T0~, the second t e r m  is negative a lways;  the 
th i rd  and subsequent  t e r m s  if k > 0; the fourth if (d/z/dX) > 0; the fifth if (dR/dX) < 0. In o rder  to e s t i -  
mate  the quantit ies (dTl/dx)ix= X and (dT2/dx)lx=X, fo rmulas  (21), (23), or (25) c a n b e  used.  

The re la t ive  contr ibut ion of the di f ferent  t e r m s  of e x p r e s s i o n  (35) to the s tabi l i ty  depends on the na-  
t u r e  of the c rys t a l l i za t ion  p roces s  and of the subs tance  being c rys t a l l i zed .  For  example ,  during pulling 
of a th in  a luminum r ibbon  by Stepanov 's  method,  for  the t h e r m a l  mechan i sms  desc r ibed  in [11], by using 
the  data of [12], we obtain 

~1 = -  1 . 0 - - 0 , 6 - - 0 , 0 2 - - 0 . 3 - - 5 . 6 - - 0 . 0 2  = - -7 .5  sec -1 . 

When pulling a sapph i re  f iber ,  ~ = --65 see  - l ,  so  that  the t e r m  re la ted  with change of d i ame te r  a l so  plays 
a pr inc ipa l  ro le ,  which conf i rms  the val idi ty of the conclusions drawn in [131, where  the e s t ima te  of the 
s tabi l i ty  in S~epanov's method is c a r r i e d  out by  a s i m i l a r  scheme.  
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N O T A T I O N  

Ti, temperature;  s coefficient of thermal  conductivity; ~i, coefficient of thermal diffusivity; el, 
specific heat (i = i for the melt and i = 2 f o r  the crystal}; x, running coordinate; X, coordinate of the 
crystall ization front; Tf, temperature  of the melt at a fixed point; To, crystall ization temperature;  V, 
speed of t ravel  of crystal  (melt}; p, density (change of density during crystallization is not taken into 
account}; R/2,  rat io of area of cross section of the crystal  to its per imeter  (for a cylinder, one-half of 
the radius, for a plate, one-half of the thickness}; p, heat-exchange coefficient {~c, convective; Pr, 
radiative); ~, Stefan--Boltzmann constant; Tm, temperature  of the surrounding medium {gas, screens}; 
Tcr ,  temperature  of the crystal;  fb.s, factor taking account of the blackness and shape of the crystal  and 
the wall receiving the emission; Te, temperature  of the end of the crystal;  ~ ,  specific heat of fusion; 
L, length of the crystal;  k, temperature  gradient of the medium; Y = ~/R. 
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